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Synchronization of the trajectory as a way to control the dynamics of a coupled system
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We introduce a scheme of controlling the dynamics of a deterministic system by coupling it to the dynamics
of another similiar system. The controlled system synchronizes its dynamics with the control signal in the
periodic as well as chaotic regimes. The method can be seen also as another way of controlling the chaotic
behavior of a coupled systerf§1063-651X%97)15608-2

PACS numbd(ps): 05.45+b, 64.60.Cn

[. INTRODUCTION to coupled systems that have only the same class of univer-
sality. We also hope to extend this method to systems with
Controlling the dynamics of a potentially chaotic systemmany degrees of freedom.

is presently a very active line of research in view of the The paper is organized as follows. First we define the
applications in communication and system identification inmethod for one dimensional coupled systeflogistic map
different branches of science. Ott, Grebogi, and Yorke13]), and then we generalize it to two-dimensional systems
(OGY), in their seminal papef1], showed how one can (Chirikov map[14]).
achieve chaotic control by using a feedback mechanism act-
ing on the control parameters of the system. Small, carefully Il. DESCRIPTION OF THE METHOD.
chosen, perturbations of the control parameters can drive the ONE-DIMENSIONAL CASE

system to a fixed state or a periodic orbit. Since the introduc- Th led tem i d of t Th
tion of that method, it has been used effectively to control € coupleg system 1S composed of two maps. The con-

. (1) . .
the dynamics of many different theoretical and experimenta&r‘g”'”g map X'’ influences the dynamics of the target map
) py the coupling defined by

systemg2,3]. The issue of control can be extended to theX
problem of the synchronization of coupled systems. For ex-
ample, synchronized behavior has been studied in mean-field
coupled Lorenz oscillator§4], diffusively coupled Lorenz F(x2)) + ex(V
systemq 5], neural network$6—8], and laser systeni9]. X('Q 1:“—”“
This paper investigates the properties of a coupled system " 1te
where a target map is controlled by another map. The targ%

X =f(x(M), 1)
©

map self-synchronizes its dynamics to that of the controllin or the one-dlmen5|ona! case, for botht) and x®, the
map. The method described here is a generalization of th gistic map was chosen:

dynamic feedback control scheni@0—19 of driving the £(x)=rx(1—x). &)
perturbed system to a fixed-point orbit. The controlling sys-

tem is a map of the same kind as the target system. Beforghe parameter(® in the control system was a constant ar-
the control is initiated, both maps display quite differentyitrary value. The parametert® in the target map was
types of dynamics because their control parameters are difhanged with subsequent iterations of the map.

ferent. In the extreme case the dynamics of the one system 1o changes in®® were determined from the approxi-
will be limited to a fixed point, while the second system will ,5te Liapunov exponents, which for the one-dimensional
be fully chaotic. The method of synchronizing the dynamicsggse are defined as

of the target system can be viewed as another method of

controlling the chaotic behavior of the target system to the 1 N df
desired orbit. In this type of control, unlike that of the OGY A= lim NE In d_X(Xi) . (4)
method, the initial values of the system and the control pa- N—eelT1=1

rameter do not need to start near their final valugs def h . . for both
The controlling scheme of the coupled map is based onI)We define the allpproxmate Liapunov for both maps as a
on the intrinsic properties of the signal generated by botHuUNNING average:

systems. This is done by comparing the estimated Liapunov

exponents of the target map to that of the controlling map. At aln|=—(Xp11)

This makes the method very general and applicable to many Aol = dx (5)
different systems, possibly with the extension of the method n+1 1+ a '

The Liapunov exponert(? for the target system is calcu-

*Permanent address: Centrum Fizyki Teoretycznej PAN, Al. Lot-lated from the dynamics of the uncoupled target map:
nikow 32/46, 02-784 Warsaw, Poland. Electronic address: ~2) 2o(2) @
mrz@vlad.ccs.fau.edu Xnp1=Iy/ Xy (1=x7). (6)
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0 10 20 30 40x10° FIG. 3. At high values of ¥=23.75 the synchronization is in-
iterations termittent. The target system synchronizes and then escapes into

outbursts of uncorrelated activity.
FIG. 1. The difference of the iterategp) — x{?)) of the control

and target systems plotted as functions of consecutive iterations for r2 @4 yA()\(l) )\(2))_ (8)
coupled logistic maps. At the beginning of the simulatiéfi=3.7 n+i-n noen
(chaotic regimg The parameter of the control map i§7=2.3  Figures 1-3 present differences of corresponding iterates
(f;]xedt_pc();nﬁ. The dtynar?lcsdof thettarget map changes rapidly from(xgl)_ng)) of the coupled and target maps. Figure 1 shows
chaolic dynamics fo a fixed point. the case when the dynamics of the control map is a fixed
point and the target map starts in the chaotic regime. As one
can see both systems synchronize rapidly, and the difference
) ) in their iterates tends to zero. Figure 2 shows the opposite
AN N = (NP =N YasgnaP—N2).  (7)  case, where the control map is in the chaotic regime and the
target map starts in the periodic regime. Figure 3 shows the
The choice of the definition of the functioh()\ff) ,7\512)) is  case where the control is intermittent; that is, the maps syn-
to some extent arbitrary. However, the shape of the functioffronize for some well-defined periods and then there are
was chosen to ensure that very small differences betwe lt)bursts of nonsynchronized ac)tlvny. For high values of
AD and A\@ will be amplified, and larger ones will be " —3-95, th(%control pgramettg‘j of the target map does
dampened to limit possible overshooting. The change&in c?zr)lver_ge ta™™, but the iterates, ” are not synchronized to
are defined as follows: Xy (Fig. 4).

We then define a function

| IIl. TWO-DIMENSIONAL CASE

The same method of control was then applied to a two-

o dimensional case. Here the Chirikov mdgl] was used:
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FIG. 2. At the beginning of the simulation®®=2.1 (fixed FIG. 4. r®M=3.95. Even when the target system cannot syn-

point). The parameter of the control maprié¢)=3.71(chaotic re-  chronize its activity to that of the controlling system, valuer 6¢
gime). Both maps synchronize rapidly. converges correctly to®. The figure plotgr(® —r®)],
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FIG. 5. The difference of iteratesx’—x®) of coupled sys- FIG. 6. At the beginning of the simulatiok(®=2.5. The pa-
tems plotted as functions of consecutive iterations for coupled Chirrameter of the control map KM=1.1.
ikov maps at the beginning of the simulatig®® =1.5. The param-

eter of the control map iK(=3.0. Both Liapunov exponents in both systems were calculated

according to the equation

Pn+1=Pn—K sindy, 9 A+ g IngliD

A, = v (18)

Ons1=0p+Pn—K sing,, (10

where 6, and p,, correspond, respectively, to the phase andvhereg!" are the corresponding eigenvaluesl¢d, ,py,).
momentum. The target system is coupled to the control map Then we defined

only through the phase dependence. However, that coupling()\(ll) NCCINCIRNCE

should be enough to achieve synchronizafeh The system n %n 2fn o

is defined as follows:

O, =140, p), (12)

PR =16, pY), (12)

g T8 o K + €6y (13
n+l 1+€ !

P =Fp(07 PP KP). (14)

For the multidimensional case the Liapunov exponents are

defined ag15]

(er1, ... eM)
N—-1
= lim (magnitude of the eigenvalue of | J(x,)*N],
N— o n=0
(15
where
350 =2 16
(X)= B (16)

is the Jacobian of the matrix of the map, ;= G(X,), which
for the Chirikov map is defined as

—-Kco¥, 1
) 17

Jw”’p”):(l—K coss, 0/
n

— ma)(|)\§111)_ )\5121)|1/4'|)\E112)_ )\5122)|l/4). (19)

The functionA was then multiplied by the appropriate sign
to provide the correct direction of the parameter change. The
changes irk! are defined by Eq(8).

The results are presented in Figs. 5 and 6 for two different
values of the parametét’. As in the one-dimensional case,
the target map rapidly synchronizes to the control map. The
method works well when the Liapunov exponents are a
monotonic function of the parameti.

IV. CONCLUSIONS

In conclusion, we presented an efficient method of con-
trolling the dynamics of the target system based on evaluat-
ing the Liapunov exponents for control and target system at
every iteration. This method seems to be very robust, and
allows a synchronization to any desired orbit from any initial
state of the target system. The use of the estimated Liapunov
exponents as a feedback control makes the method very gen-
eral, and possibly it can be extended to coupled systems with
the same classes of universality and to systems with many
degrees of freedom. Thus it seems to be an advantage over
the OGY method of controlling a chaotic dynamics of the
system that may find many applications in different branches
of science.
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