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Synchronization of the trajectory as a way to control the dynamics of a coupled system

Michał Żochowski* and Larry S. Liebovitch
Center for Complex Systems, T-8, Florida Atlantic University, Boca Raton, Florida 33431

~Received 14 January 1997; revised manuscript received 14 May 1997!

We introduce a scheme of controlling the dynamics of a deterministic system by coupling it to the dynamics
of another similiar system. The controlled system synchronizes its dynamics with the control signal in the
periodic as well as chaotic regimes. The method can be seen also as another way of controlling the chaotic
behavior of a coupled system.@S1063-651X~97!15608-2#

PACS number~s!: 05.45.1b, 64.60.Cn
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I. INTRODUCTION

Controlling the dynamics of a potentially chaotic syste
is presently a very active line of research in view of t
applications in communication and system identification
different branches of science. Ott, Grebogi, and Yo
~OGY!, in their seminal paper@1#, showed how one can
achieve chaotic control by using a feedback mechanism
ing on the control parameters of the system. Small, caref
chosen, perturbations of the control parameters can drive
system to a fixed state or a periodic orbit. Since the introd
tion of that method, it has been used effectively to cont
the dynamics of many different theoretical and experimen
systems@2,3#. The issue of control can be extended to t
problem of the synchronization of coupled systems. For
ample, synchronized behavior has been studied in mean-
coupled Lorenz oscillators@4#, diffusively coupled Lorenz
systems@5#, neural networks@6–8#, and laser systems@9#.

This paper investigates the properties of a coupled sys
where a target map is controlled by another map. The ta
map self-synchronizes its dynamics to that of the controll
map. The method described here is a generalization of
dynamic feedback control scheme@10–12# of driving the
perturbed system to a fixed-point orbit. The controlling s
tem is a map of the same kind as the target system. Be
the control is initiated, both maps display quite differe
types of dynamics because their control parameters are
ferent. In the extreme case the dynamics of the one sys
will be limited to a fixed point, while the second system w
be fully chaotic. The method of synchronizing the dynam
of the target system can be viewed as another metho
controlling the chaotic behavior of the target system to
desired orbit. In this type of control, unlike that of the OG
method, the initial values of the system and the control
rameter do not need to start near their final values@1#.

The controlling scheme of the coupled map is based o
on the intrinsic properties of the signal generated by b
systems. This is done by comparing the estimated Liapu
exponents of the target map to that of the controlling m
This makes the method very general and applicable to m
different systems, possibly with the extension of the meth
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to coupled systems that have only the same class of uni
sality. We also hope to extend this method to systems w
many degrees of freedom.

The paper is organized as follows. First we define
method for one dimensional coupled systems~logistic map
@13#!, and then we generalize it to two-dimensional syste
~Chirikov map@14#!.

II. DESCRIPTION OF THE METHOD.
ONE-DIMENSIONAL CASE

The coupled system is composed of two maps. The c
trolling mapx(1) influences the dynamics of the target m
x(2) by the coupling defined by

xn11
~1! 5 f ~xn

~1!!, ~1!

xn11
~2! 5

f ~xn
~2!!1exn11

~1!

11e
. ~2!

For the one-dimensional case, for bothx(1) and x(2), the
logistic map was chosen:

f ~x!5rx~12x!. ~3!

The parameterr (1) in the control system was a constant a
bitrary value. The parameterr (2) in the target map was
changed with subsequent iterations of the map.

The changes inr (2) were determined from the approx
mate Liapunov exponents, which for the one-dimensio
case are defined as

l5 lim
N→`

1

N(
i 51

N

lnUd f

dx
~xi !U. ~4!

We define the approximate Liapunov for both maps a
running average:

ln115

ln1a lnUd f

dx
~xn11!U

11a
. ~5!

The Liapunov exponentl (2) for the target system is calcu
lated from the dynamics of the uncoupled target map:

x̃ n11
~2! 5r n

~2!xn
~2!~12xn

~2!!. ~6!

-
:
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We then define a function

A~ln
~1! ,ln

~2!!5~ uln
~1!2ln

~2!u!1/4sgn~ln
~1!2ln

~2!!. ~7!

The choice of the definition of the functionA(ln
(1) ,ln

(2)) is
to some extent arbitrary. However, the shape of the func
was chosen to ensure that very small differences betw
ln

(1) and ln
(2) will be amplified, and larger ones will be

dampened to limit possible overshooting. The changes inr (2)

are defined as follows:

FIG. 1. The difference of the iterates (xn
(1)2xn

(2)) of the control
and target systems plotted as functions of consecutive iteration
coupled logistic maps. At the beginning of the simulationr (2)53.7
~chaotic regime!. The parameter of the control map isr (1)52.3
~fixed point!. The dynamics of the target map changes rapidly fr
chaotic dynamics to a fixed point.

FIG. 2. At the beginning of the simulationr (2)52.1 ~fixed
point!. The parameter of the control map isr (1)53.71 ~chaotic re-
gime!. Both maps synchronize rapidly.
n
en

r n11
~2! 5r n

~2!1gA~ln
~1! ,ln

~2!!. ~8!

Figures 1–3 present differences of corresponding itera
(xn

(1)2xn
(2)) of the coupled and target maps. Figure 1 sho

the case when the dynamics of the control map is a fi
point and the target map starts in the chaotic regime. As
can see both systems synchronize rapidly, and the differe
in their iterates tends to zero. Figure 2 shows the oppo
case, where the control map is in the chaotic regime and
target map starts in the periodic regime. Figure 3 shows
case where the control is intermittent; that is, the maps s
chronize for some well-defined periods and then there
outbursts of nonsynchronized activity. For high values
r (1)53.95, the control parameterr (2) of the target map does
converge tor (1), but the iteratesxn

(1) are not synchronized to
xn

(2) ~Fig. 4!.

III. TWO-DIMENSIONAL CASE

The same method of control was then applied to a tw
dimensional case. Here the Chirikov map@14# was used:

for

FIG. 3. At high values ofr (1)53.75 the synchronization is in
termittent. The target system synchronizes and then escapes
outbursts of uncorrelated activity.

FIG. 4. r (1)53.95. Even when the target system cannot sy
chronize its activity to that of the controlling system, value ofr (2)

converges correctly tor (1). The figure plotsur (2)2r (1)u.
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pn115pn2K sinun , ~9!

un115un1pn2K sinun , ~10!

whereun and pn correspond, respectively, to the phase a
momentum. The target system is coupled to the control m
only through the phase dependence. However, that coup
should be enough to achieve synchronization@5#. The system
is defined as follows:

un11
~1! 5 f u~un

~1!,pn
~1!!, ~11!

pn11
~1! 5 f p~un

~1!,pn
~1!!, ~12!

un11
~2! 5

f u~un
~2!,pn

~2!,Kn
~2!!1eun11

~1!

11e
, ~13!

pn11
~2! 5 f p~un

~2!,pn
~2!,Kn

~2!!. ~14!

For the multidimensional case the Liapunov exponents
defined as@15#

~el1, . . . ,eld!

5 lim
N→`

S magnitude of the eigenvalue of)
n50

N21

J~xWn!1/ND ,

~15!

where

J~xW !5S dGi

dxj
D ~16!

is the Jacobian of the matrix of the mapxWn115GW (xWn), which
for the Chirikov map is defined as

J~un ,pn!5S 2K cosun 1

12K cosun 0D . ~17!

FIG. 5. The difference of iterates (xn
(1)2xn

(2)) of coupled sys-
tems plotted as functions of consecutive iterations for coupled C
ikov maps at the beginning of the simulationK (2)51.5. The param-
eter of the control map isK (1)53.0.
d
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Both Liapunov exponents in both systems were calcula
according to the equation

ln11
~ i i ! 5

ln
~ i i !1a lnwn

~ i i !

11a
, ~18!

wherewn
( i i ) are the corresponding eigenvalues ofJ(un ,pn).

Then we defined

A~ln
~11!,ln

~12!,ln
~21!,ln

~22!,!

5max~ uln
~11!2ln

~21!u1/4,uln
~12!2ln

~22!u1/4!. ~19!

The functionA was then multiplied by the appropriate sig
to provide the correct direction of the parameter change.
changes inK1 are defined by Eq.~8!.

The results are presented in Figs. 5 and 6 for two differ
values of the parameterK1. As in the one-dimensional case
the target map rapidly synchronizes to the control map. T
method works well when the Liapunov exponents are
monotonic function of the parameterK.

IV. CONCLUSIONS

In conclusion, we presented an efficient method of co
trolling the dynamics of the target system based on eval
ing the Liapunov exponents for control and target system
every iteration. This method seems to be very robust,
allows a synchronization to any desired orbit from any init
state of the target system. The use of the estimated Liapu
exponents as a feedback control makes the method very
eral, and possibly it can be extended to coupled systems
the same classes of universality and to systems with m
degrees of freedom. Thus it seems to be an advantage
the OGY method of controlling a chaotic dynamics of t
system that may find many applications in different branc
of science.
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FIG. 6. At the beginning of the simulationK (2)52.5. The pa-

rameter of the control map isK (1)51.1.
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